This repository has been archived on 2025-05-15. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
synchronizator-go/pkg/fetcher.go

260 lines
6.1 KiB
Go

package synchronizator
import (
"context"
"fmt"
"math/rand"
"sync"
"time"
)
// Fetcher is the concurrent manager
// upon invocation, should create a worker pool of 1 to get the first set of results
// then base on the Patination Total and Limit, should distribute the workload
//
// It also needs to handle errors, rate-limits, retries strategies, and gracefull rejections
//
// It should return the pages not fetched for later retry
//
// Pagination should include a max-concurrent connection and rate-limit
// configuration to prevent having errors from external sources
//
// Maybe change the name to pagination or embed in another struct
type Fetcher = func(pagination Pagination) ([]*Collection, Pagination, error)
type Pagination struct {
Total int
HasMore bool
Limit int
Offset int
}
var StartPagination = Pagination{
Total: 0,
HasMore: false,
Limit: 10,
Offset: 0,
}
func NewRateLimit(request_per int, time_scale time.Duration) <-chan time.Time {
rate_limit := make(chan time.Time, request_per)
tickrate := time_scale / time.Duration(request_per)
for range request_per {
rate_limit <- time.Now()
}
go func() {
for t := range time.Tick(tickrate) {
rate_limit <- t
}
}()
return rate_limit
}
// T represent the argument of the function to run
// S represent the return value of the function to run
type WorkUnit[T, S any] struct {
argument T
result S
err error
timeout time.Duration
attempts uint8
}
// Work represents a function that processes a value of type S and returns a
// result of type T or an error.
type Work[T, S any] func(value T) (S, error)
// Worker represents a worker that processes tasks of type S and sends results
// of type T.
type Worker[T, S any] struct {
id uint8 // id is the unique identifier of the worker.
receptor <-chan WorkUnit[T, S] // receptor is the channel from which the worker receives tasks.
transmiter chan<- WorkUnit[T, S] // transmiter is the channel to which the worker sends results.
wg *sync.WaitGroup // wg is the wait group to synchronize the completion of tasks.
work Work[T, S] // work is the function that processes tasks.
rate_limit <-chan time.Time
}
type WorkConfig struct {
tasks_processed sync.WaitGroup
max_workers uint8
max_retries uint8
base_retry_time time.Duration
rate_limit <-chan time.Time
}
type Channels[T, S any] struct {
tasks_queue chan T
tasks_done chan S
tasks_failed chan error
units_dispatcher chan WorkUnit[T, S]
units_receiver chan WorkUnit[T, S]
}
func spawn_worker[T, S any](worker *Worker[T, S]) {
// TODO: handle tiemouts
for workUnit := range worker.receptor {
// Wait for rate-limit
<-worker.rate_limit
value, err := worker.work(workUnit.argument)
workUnit.result = value
workUnit.err = err
worker.transmiter <- workUnit
}
}
func handleFailedWorkUnit[T, S any](
workUnit *WorkUnit[T, S],
channels *Channels[T, S],
config *WorkConfig,
) bool {
if config.max_retries <= workUnit.attempts {
channels.tasks_failed <- workUnit.err
config.tasks_processed.Done()
return false
}
workUnit.attempts++
workUnit.err = nil
if workUnit.timeout == 0 {
workUnit.timeout = config.base_retry_time
} else {
workUnit.timeout *= 2
}
go func() {
jitter := time.Duration(rand.Int63n(int64(workUnit.timeout)))
timeout := workUnit.timeout + jitter
fmt.Printf(
"Unit with value %v failed for %v time, retrying in: %v\n",
workUnit.argument,
workUnit.attempts,
timeout,
)
time.Sleep(timeout)
channels.units_dispatcher <- *workUnit
}()
return true
}
// this is in charge of what we return to the user
// exits when units_receiver is closed, which is done when the workers are closed
func listenForWorkResults[T, S any](
ctx context.Context,
channels *Channels[T, S],
config *WorkConfig,
) {
for {
select {
case workUnit, ok := <-channels.units_receiver:
if !ok {
return
}
if workUnit.err != nil {
handleFailedWorkUnit(&workUnit, channels, config)
continue
}
// Send message to user
channels.tasks_done <- workUnit.result
config.tasks_processed.Done()
case <-ctx.Done():
return
}
}
}
// this is in charge of receive values and transform them into work units
// stops when the queue is empty
func workUnitDispatcher[T, S any](
ctx context.Context,
finish context.CancelFunc,
channels *Channels[T, S],
config *WorkConfig,
) {
defer stopProcessingWork(finish, channels, config)
for {
select {
case value, ok := <-channels.tasks_queue:
if !ok {
return
}
workUnit := WorkUnit[T, S]{
argument: value,
timeout: 0,
attempts: 0,
}
channels.units_dispatcher <- workUnit
config.tasks_processed.Add(1)
case <-ctx.Done():
fmt.Println("context done")
return
}
}
}
// this wait for all workers to stop, then close the unit channels where the workers send values
// prevent closing the channel before the workers finish
func stopProcessingWork[T, S any](
finish context.CancelFunc,
channels *Channels[T, S],
config *WorkConfig,
) {
config.tasks_processed.Wait()
close(channels.units_receiver)
close(channels.units_dispatcher)
close(channels.tasks_done)
close(channels.tasks_failed)
finish()
}
func asyncTaskRunner[T, S any](
ctx context.Context,
inbound chan T,
config *WorkConfig,
work Work[T, S],
) (<-chan S, <-chan error, <-chan struct{}) {
channel_size := config.max_workers * 3
done, finish := context.WithCancel(ctx)
channels := &Channels[T, S]{
tasks_queue: inbound,
tasks_done: make(chan S),
tasks_failed: make(chan error),
units_dispatcher: make(chan WorkUnit[T, S], channel_size),
units_receiver: make(chan WorkUnit[T, S], channel_size),
}
// create pool of workers
for i := range config.max_workers {
worker := &Worker[T, S]{
id: uint8(i),
receptor: channels.units_dispatcher,
transmiter: channels.units_receiver,
rate_limit: config.rate_limit,
work: work,
}
go spawn_worker(worker)
}
go listenForWorkResults(done, channels, config)
go workUnitDispatcher(done, finish, channels, config)
return channels.tasks_done, channels.tasks_failed, done.Done()
}